skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Hiep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the conditions for the Hi-to-H2transition in the solar neighborhood by analyzing Hiemission and absorption measurements toward 58 Galactic lines of sight (LOSs) along with12CO(1–0) (CO) and dust data. Based on the accurate column densities of the cold and warm neutral medium (CNM and WNM), we first perform a decomposition of gas into atomic and molecular phases, and show that the observed LOSs are mostly Hi-dominated. In addition, we find that the CO-dark H2, not the optically thick Hi, is a major ingredient of the dark gas in the solar neighborhood. To examine the conditions for the formation of CO-bright molecular gas, we analyze the kinematic association between Hiand CO, and find that the CNM is kinematically more closely associated with CO than the WNM. When CNM components within CO line widths are isolated, we find the following characteristics: spin temperature < 200 K, peak optical depth > 0.1, CNM fraction of ∼0.6, andV-band dust extinction > 0.5 mag. These results suggest that CO-bright molecular gas preferentially forms in environments with high column densities where the CNM becomes colder and more abundant. Finally, we confront the observed CNM properties with the steady-state H2formation model of Sternberg et al. and infer that the CNM must be clumpy with a small volume filling factor. Another possibility would be that missing processes in the model, such as cosmic-rays and gas dynamics, play an important role in the Hi-to-H2transition. 
    more » « less
  2. ABSTRACT We present the largest Galactic neutral hydrogen H i absorption survey to date, utilizing the Australian SKA Pathfinder Telescope at an unprecedented spatial resolution of 30 arcsec. This survey, GASKAP-H i, unbiasedly targets 2714 continuum background sources over 250 square degrees in the direction of the Magellanic Clouds, a significant increase compared to a total of 373 sources observed by previous Galactic absorption surveys across the entire Milky Way. We aim to investigate the physical properties of cold (CNM) and warm (WNM) neutral atomic gas in the Milky Way foreground, characterized by two prominent filaments at high Galactic latitudes (between $$-45^{\circ }$$ and $$-25^{\circ }$$). We detected strong H i absorption along 462 lines of sight above the 3$$\sigma$$ threshold, achieving an absorption detection rate of 17 per cent. GASKAP-H i’s unprecedented angular resolution allows for simultaneous absorption and emission measurements to sample almost the same gas clouds along a line of sight. A joint Gaussian decomposition is then applied to absorption-emission spectra to provide direct estimates of H i optical depths, temperatures, and column densities for the CNM and WNM components. The thermal properties of CNM components are consistent with those previously observed along a wide range of Solar neighbourhood environments, indicating that cold H i properties are widely prevalent throughout the local interstellar medium. Across our region of interest, CNM accounts for $$\sim$$30 per cent of the total H i gas, with the CNM fraction increasing with column density towards the two filaments. Our analysis reveals an anticorrelation between CNM temperature and its optical depth, which implies that CNM with lower optical depth leads to a higher temperature. 
    more » « less
  3. Polymer dielectrics have been widely used in electrical and electronic systems for capacitive energy storage and electrical insulation. However, emerging applications such as electric vehicles and hybrid electric aircraft demand improved polymer dielectrics for operation not only under high electric fields and high temperatures, but also extreme conditions, for example, low pressures at high altitudes, with largely increased likelihood of electrical partial discharges. To meet these stringent requirements of grand electrifications for payload efficiency, polymers with enhanced discharge resistance are highly desired. Here, we present a surface-engineering approach for Kapton® coated with self-assembled two-dimensional montmorillonite nanosheets. By suppressing the magnitude of the high-field partial discharges, this nanocoating endows polymers with improved discharge resistance, with satisfactory discharge endurance life of 200 hours at a high electric field of 46 kV mm −1 while maintaining the surface morphology of the polymer. Moreover, the MMT nanocoating can also improve the thermal stability of Kapton®, with significantly suppressed temperature coefficients for both the dielectric constant and dielectric loss over a wide temperature range from 25 to 205 °C. This work provides a practical method of surface nanocoating to explore high-discharge-resistant polymers for harsh condition electrification. 
    more » « less